Linking over cones for the Neumann fractional p-Laplacian

نویسندگان

چکیده

We consider nonlinear problems governed by the fractional p-Laplacian in presence of nonlocal Neumann boundary conditions and we show three different existence results: first two theorems deal with a p-superlinear term, last one source having p-linear growth. For case face main difficulties. First: term may not satisfy Ambrosetti-Rabinowitz condition. Second, more important: although topological structure underlying functional reminds linking theorem, nature associated eigenfunctions prevents use such classical theorem. these reasons, are led to adopt another approach, relying on notion over cones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...

متن کامل

Stability of variational eigenvalues for the fractional p–Laplacian

By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2020.09.018